

MIPAS

Michelson Interferometer for Passive Atmospheric Sounding

The MIPAS Team presented by T. Fehr

Aura Workshop, The Hague, 8 November 2005

The Interferometer

The Interferometer

Fact Sheet

Spectral range:

 $4.1 - 14.6 \mu m$

Spectral resolution:

0.035 cm⁻¹ (FR)

0.0625 cm⁻¹ (RR)

Altitude range:

Nominal mode: 6 – 68 km other observation modes

Coverage:

Global, pole to pole

Measurement schedule:

Continuous until 2004 Discontinuous at present (35% duty cycle)

Measurement products:

Operational:

 $p, T, H_2O, O_3, CH_4, N_2O, HNO_3, NO_2$ Scientific:

NO, N₂O₅, HNO₄, CIONO₂, CIO, CO, CFCs, NH₃, C₂H₆ HDO,

 O_3 isotopomers and others (more than 25 parameters)

Coverage in one day

Coverage in three days

Research Areas

- 1. Chemistry and Dynamics of the Stratosphere ozone depletion, partitioning of compounds, PSCs
- 2. Stratospheric/Tropospheric exchange upward transport in tropics, polar subsidence
- 3. Chemistry of the Upper Troposphere vertical transport of polluted air from PBL
- **4. Mesosphere and Lower Termosphere** carbon budget in the upper atmosphere, ozone in the mesosphere non-LTE parameters, solar storm effects
- 5. Climatology and Weather Forecasting temperature and ozone in the stratosphere for data assimilation

Spectral Channels

Channel A

Retrieved Species

Retrieved Species (science)

Instrument Performance

1. Measurement performance

 Excellent radiometric and spectral performance (exceeding specs)

2. December 2002: Cooler anomalies

- Resolved through bypassing automatic compensation software, and performing manual balancing of the two sterling cooler units.
- March 2003: First sparse interferometer instabilities, gradually increasing in frequency
 - Mission interruptions for investigations since mid 2004
- 4. January 2005 systematic operations have resumed with
 - Reduced duty cycle (35% of time "on", 65% "off")
 - Reduced spectral resolution (40.99%)
 - Denser geographical sampling (altitude, latitude)

Operational Processing

- 1. Current Operational Data Processor: 4.63
- 2. Adaptation to reduced resolution available for level 1B, including calibration improvements
- 3. Algorithm Adaptation for Level 2 is underway
- 4. Currently all level 0 are stored
- 5. Level 1B processing begins after 4.65 installation (this month)
- 6. Level 2 processing will resume 2006 (including all backlog)
- 7. Full-Resolution Mission reprocessing (July 2002 March 2004) completed, data available online via ftp

Methane

Mapping the 3D profile of different trace gases: Methane (CH4)

Ozone

Mapping the 3D profile of different trace gases: Methane (CH4)

MIPAS-Model Comparison

Ozone distribution at 50 hPa 26.09.02 [top] / 13.10.02 [bottom]

NO_y

27/09/2002 N2O orbit: 3008 27-SEP-2002 06:14 - 06:46 NO2 orbit: 3008 27-SEP-2002 06:14 - 06:46 0.3 0.015 0.2 0.010 N_2O 0.1 0.005 20 ppmv 0.020 HNO3 orbit: 3008 27-SEP-2002 06:14 - 06:46 NO orbit: 3008 27-SEP-2002 06:14 - 06:46 0.010 0.015 0.008 0.010 HNO₃ 0.006 0.0040.005 0.002 0.000 0.0030 ppmv CIONO2 orbit: 3008 27-SEP-2002 06:14 - 06:46 N2O5 orbit: 3008 27-SEP-2002 06:14 - 06:46 0.004 0.0025 0.003 0.0020 30 0.002 0.0015 CIONO₂ 0.0010 0.001 0.0005

 NO_2

NO

 N_2O_5

European Space Agency Agence apolish européann

Balloon/Aircraft Validation

Karlsruhe

Ongoing Activity

Example: Balloon Campaign

Aire, 43°N, 24 Sep. 2002 (Fl. 11):

→ Perfect coincidence in terms of time and location

Research Highlights

Polar stratospheric clouds (PSCs):

- Discovery of a nitric acid trihydrate (NAT) PSC belt around Antarctica caused by mountain waves (Höpfner et al., ACPD, 2005a)
- Spectroscopic evidence for β-NAT as constituent of Type 1a PSCs (Höpfner et al., ACPD, 2005b)

Solar Proton Event (SPE) November 2003:

First detection of SPE induced enhancements of HOCI, N₂O₅, CIONO₂ (apart from NO_x, HNO₃, and reduction of O₃) and identification of two different chemical processes

(López-Puertas et al., JGR, 2005a, 2005b; v. Clarmann et al., JGR, 2005)

Downward transport of NO_x from the upper atmosphere:

- NO_x intrusion in Antarctic winter 2003 from UA = 9% of annual SH production of NO_y by N₂O oxidation (Funke et al., JGR, 2005)
- Secondary Antarctic mid-winter HNO₃ maximum can be related to downward transport of NO_x and conversion via ion cluster chemistry (Stiller et al. JGR, 2005)

Research Highlights

Early Antarctic vortex split 2003:

- First space-borne observation of CIO by mid-IR limb emission spectroscopy (Glatthor et al., JGR, 2004)
- First space-borne observations of springtime Antarctic stratospheric CIONO₂ reveals unusual recovery of chlorine into CIONO₂ (Höpfner et al., JGR, 2004)
- Quantification of NO_y partitioning and denitrification (Mengistu Tsidu et al., JGR, 2005)

Upper troposphere / lower stratosphere H₂O:

 Discovery of global subtropical bands of enhanced water vapor at around 18 km with maximum values over the Arabic peninsula (Milz et al., JGR, 2005)

How to apply for data access within a Category 1 use framework

Application for Category 1 use data access can be submitted to ESA <u>at any time</u> using the ESA Earth Observation Principal Investigator portal (already established for OMI).

Terms and conditions:

- to use the data provided for Category 1 use only within the project team (i.e. Pl and co-Pls) and only for the purpose described in the project proposal
- to widely **publish** the project results in **scientific publications** or presentations (with data citation: "[mission or instrument] Data provided by European Space Agency"

ENVISAT Mission

- Largest European satellite & largest worldwide EO satellite:
 - □ unique combination of 9 instruments addressing land, ocean, ice and atmosphere studies,
 - instruments working nominally, except for MIPAS
 (discontinuous operations) and GOMOS (but workaround found).
- □ 78 different types of data products250 Gigabytes of data products generated per day
- □ Satellite OK with mid-term operations capabilities:
 - □ 65 % of hydrazine available,
 - the on-board hydrazine is the main limiting factor for the mission lifetime
- **□** Operations funding expected until 2010

MIPAS at the Aura WS

More on MIPAS at the Aura Workshop:

- Thu. 08:45, The First two years of the MIPAS/ENVISAT mission: Scientific results related to the upper troposphere and lower stratosphere (UTLS), Gabriele P. Stiller
- Thu., 15:00 Origin of the January-March 2004 strong NO2 enhancement in the northern polar stratosphere using MIPAS and GOMOS data, Jean-Baptiste Renard
- Poster: Massimo Carlotti, GMTR: Two-Dimensional Multi-Target Retrieval Model for MIPAS/ENVISAT Observations
- Poster: Bernd Funke, The first two years of the MIPAS/ENVISAT mission: Scientific results related to the stratosphere and mesosphere
- Poster: Thorsten Fehr, The ENVISAT Atmospheric Chemistry Mission: Status and Performance
- Poster: Mathias Milz, Measurements of water vapour with MIPAS/Envisat
- Poster: Yvan Orsolini, MIPAS Observations of Stratospheric Impacts of Solar Storms
- Poster: Jörg Steinwagner, Global distribution of water isotopes retrieved from MIPAS measurements
- Poster: Gabriele P. Stiller The first two years of the MIPAS/ENVISAT mission: Scientific results related to polar ozone chemistry
- Poster: Joanne Walker, MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) and MLS carbon monoxide retrievals compared

